Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Gen-Rong Qiang,^a Zheng Fan,^b Shang Shan,^a* Yu-Liang Tian^a and Xu-Chun Fu^c

^aCollege of Chemical Engineering and Materials Science, Zhejiang University of Technology, People's Republic of China, ^bCollege of Biological and Environmental Engineering, Zhejiang University of Technology, People's Republic of China, and ^cDepartment of Pharmacy, Zhejiang University City College, People's Republic of China

Correspondence e-mail: shanshang@mail.hz.zj.cn

Key indicators

Single-crystal X-ray study T = 294 KMean σ (C–C) = 0.005 Å R factor = 0.066 wR factor = 0.245 Data-to-parameter ratio = 12.0

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e. (*E*)-4-Methylbenzaldehyde 2,4,6-trinitrophenylhydrazone

The crystals of the title compound, $C_{14}H_{11}N_5O_6$, were obtained from a condensation reaction of 4-methylbenzaldehyde and 2,4,6-trinitrophenylhydrazine. The molecule displays an *E* configuration. The centroid-to-centroid separation of 3.885 (2) Å indicates the existence of π - π stacking between nearly parallel benzene rings of neighboring molecules.

Comment

As some phenylhydrazone derivatives have been shown to be potential DNA-damaging or mutagenic agents (Okabe *et al.*, 1993), a series of nitrophenylhydrazone derivatives has been synthesized in our laboratory in order to investigate the relationship between structure and bioactivity (Shan *et al.*, 2003; Fan *et al.*, 2005). Here we present the crystal structure of the title trinitrophenylhydrazone compound, (I).

The molecular structure of (I) is shown in Fig. 1. The molecule displays an E configuration, with the methylphenyl and trinitrophenyl groups located on opposite sides of the C7=N2 double bond. This agrees with the configuration commonly found in phenylhydrazones (Bolte & Dill, 1998). The molecule of (I) is approximately planar [dihedral angle between the two benzene rings is $4.86 (16)^{\circ}$], apart from the N3-nitro group being nearly perpendicular [dihedral angle 82.70 $(17)^{\circ}$] to the C1-benzene ring to minimize the repulsion between the N3nitro group and atom N2 [O2···N2 separation 2.937 (4) Å]. Within the trinitrophenyl group, both the C1-C2 and C1-C6bonds (adjacent to the N1-imino group) are significantly longer than the average distance of 1.374 (5) Å for the other C-C bonds in the same benzene ring (Table 1). This is consistent with that found in a trinitrophenylhydrazone compound reported previously (Fan et al., 2005).

Received 25 March 2007 Accepted 26 March 2007

© 2007 International Union of Crystallography All rights reserved

2746 independent reflections

 $R_{\rm int} = 0.027$

1690 reflections with $I > 2\sigma(I)$

Figure 1

The molecular structure of (I) with 40% probability displacement ellipsoids (arbitrary spheres for H atoms); the dashed line shows the intramolecular hydrogen bonding.

Figure 2

A diagram showing $\pi - \pi$ stacking [symmetry code: (ii) 1 - x, -y, 1 - z].

The centroid-to-centroid separation of 3.885 (2) Å between nearly parallel C2-benzene and C9ⁱⁱ-benzene rings [dihedral angle 4.86 (16)°] indicates the existence of π - π stacking (Fig. 2) [symmetry code: (ii) 1 - x, -y, 1 - z]. Intermolecular C-H···O hydrogen bonding (Table 2) helps to stabilize the crystal structure of (I).

Experimental

2,4,6-Trinitrophenylhydrazine (0.24 g, 1 mmol) was dissolved in ethanol (18 ml), then acetic acid (0.3 ml) was added slowly with stirring. The solution was heated at 333 K for several minutes until it became clear. To the above solution 4-methylbenzaldehyde (0.12 g,

Crystal data

 $C_{14}H_{11}N_5O_6$ $\gamma = 83.606 (6)^{\circ}$
 $M_r = 345.28$ $V = 763.6 (2) Å^3$

 Triclinic, $P\overline{1}$ Z = 2

 a = 7.1378 (12) Å Mo K α radiation

 b = 7.4914 (14) Å $\mu = 0.12 \text{ mm}^{-1}$

 c = 14.9950 (19) Å T = 294 (2) K

 $\alpha = 76.191 (9)^{\circ}$ $0.31 \times 0.23 \times 0.12 \text{ mm}$

Data collection

Rigaku R-AXIS RAPID IP diffractometer Absorption correction: none 6162 measured reflections

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.066$ 228 parameters $wR(F^2) = 0.245$ H-atom parameters constrainedS = 1.11 $\Delta \rho_{max} = 0.40$ e Å $^{-3}$ 2746 reflections $\Delta \rho_{min} = -0.23$ e Å $^{-3}$

Table 1

Selected bond lengths (Å).

N1-C1	1.341 (4)	C2-C3	1.370 (4)
N1-N2	1.370 (3)	C3-C4	1.377 (5)
N2-C7	1.276 (4)	C4-C5	1.363 (5)
C1-C2	1.424 (4)	C5-C6	1.385 (5)
C1-C6	1.429 (4)		

Table 2			
Hydrogen-bond	geometry	(Å,	°).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
$\begin{array}{c} N1 - H1 \cdots O6 \\ C3 - H3 \cdots O1^{i} \end{array}$	0.86 0.93	1.96 2.44	2.601 (4) 3.302 (5)	130 155

Symmetry code: (i) -x, -y + 1, -z + 1.

Methyl H atoms were placed in calculated positions with C–H = 0.96 Å and the torsion angle was refined to fit the electron density; $U_{\rm iso}({\rm H}) = 1.5U_{\rm eq}({\rm C})$. Other H atoms were placed in calculated positions with C–H = 0.93 Å and N–H = 0.86 Å, and refined in the riding mode with $U_{\rm iso}({\rm H}) = 1.2U_{\rm eq}({\rm C},{\rm N})$.

Data collection: *PROCESS-AUTO* (Rigaku, 1998); cell refinement: *PROCESS-AUTO*; data reduction: *CrystalStructure* (Rigaku/ MSC, 2002); program(s) used to solve structure: *SIR92* (Altomare *et al.*, 1993); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 1997); software used to prepare material for publication: *WinGX* (Farrugia, 1999).

The project was supported by the Natural Science Foundation of Zhejiang Province of China (grant No. M203027).

References

Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.

Bolte, M. & Dill, M. (1998). *Acta Cryst.* C**54**, IUC9800065. Fan, Z., Shan, S. & Xu, D.-J. (2005). *Acta Cryst.* E**61**, o2758–o2760. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Farrugia, L. J. (1999). J. Appl. Cryst. **32**, 837–838. Okabe, N., Nakamura, T. & Fukuda, H. (1993). Acta Cryst. C**49**, 1678–1680.

Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.

Rigaku/MSC (2002). CrystalStructure. Version 3.00. Rigaku/MSC, The Woodlands, Texas, USA.

Shan, S., Xu, D.-J., Hung, C.-H., Wu, J.-Y. & Chiang, M. Y. (2003). Acta Cryst. C59, o135-o136.

Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.